咳嗽音频信号分类是筛查呼吸道疾病(例如COVID-19)的潜在有用工具。由于从这种传染性疾病的患者那里收集数据是危险的,因此许多研究团队已转向众包来迅速收集咳嗽声数据,因为它是为了生成咳嗽数据集的工作。 Coughvid数据集邀请专家医生诊断有限数量上传的记录中存在的潜在疾病。但是,这种方法遭受了咳嗽的潜在标签,以及专家之间的显着分歧。在这项工作中,我们使用半监督的学习(SSL)方法来提高咳嗽数据集的标签一致性以及COVID-19的鲁棒性与健康的咳嗽声音分类。首先,我们利用现有的SSL专家知识聚合技术来克服数据集中的标签不一致和稀疏性。接下来,我们的SSL方法用于识别可用于训练或增加未来咳嗽分类模型的重新标记咳嗽音频样本的子样本。证明了重新标记的数据的一致性,因为它表现出高度的类可分离性,尽管原始数据集中存在专家标签不一致,但它比用户标记的数据高3倍。此外,在重新标记的数据中放大了用户标记的音频段的频谱差异,从而导致健康和COVID-19咳嗽之间的功率频谱密度显着不同,这既证明了新数据集的一致性及其与新数据的一致性及其与新数据的一致性的提高,其解释性与其与其解释性的一致性相同。声学的观点。最后,我们演示了如何使用重新标记的数据集来训练咳嗽分类器。这种SSL方法可用于结合几位专家的医学知识,以提高任何诊断分类任务的数据库一致性。
translated by 谷歌翻译
对于涉及连续的,半监督的学习以进行长期监测的应用程序,高维计算(HDC)作为机器学习范式非常有趣。但是,其准确性尚未与其他机器学习(ML)方法相提并论。允许快速设计空间探索以找到实用算法的框架对于使高清计算与其他ML技术竞争是必要的。为此,我们介绍了HDTORCH,这是一个开源的,基于Pytorch的HDC库,其中包含用于HyperVector操作的CUDA扩展名。我们通过使用经典和在线HD培训方法来分析四个HDC基准数据集,从而证明了HDTORCH的实用程序。我们为经典/在线HD的平均(训练)/推理速度分别为(111x/68x)/87x。此外,我们分析了不同的超参数对运行时和准确性的影响。最后,我们演示了HDTORCH如何实现对大型现实世界数据集应用的HDC策略的探索。我们对CHB-MIT EEG癫痫数据库进行了首个高清训练和推理分析。结果表明,在一部分数据子集上训练的典型方法不一定会推广到整个数据集,这是开发医疗可穿戴设备的未来HD模型时的重要因素。
translated by 谷歌翻译
目的:通过可穿戴传感器持续监测生物信号,在医疗和健康领域迅速扩展。在静止时,自动检测重要参数通常是准确的。然而,在诸如高强度运动的条件下,信号发生突然的生理变化,损害标准算法的鲁棒性。方法:我们的方法称为Bayeslope,是基于无监督的学习,贝叶斯滤波和非线性归一化,并根据ECG中的预期位置来增强和正确地检测R峰值。此外,随着贝叶克洛斯的计算沉重并且可以快速排出设备电池,我们提出了一种在线设计,可使其突然生理变化以及对现代嵌入式平台的异构资源的复杂性。该方法将Bayeslope与轻量级算法相结合,在具有不同能力的核心中执行,以减少能量消耗,同时保持精度。结果:贝森普洛普在激进的骑自行车运动中实现了99.3%的F1得分为99.3%。此外,在线自适应过程在五种不同的运动强度上实现了99%的F1得分,总能耗为1.55±0.54〜MJ。结论:我们提出了一种高度准确和稳健的方法,以及在现代超低功耗嵌入式平台中的完整节能实现,以提高攻击条件下的R峰值检测,例如在高强度运动期间。重要意义:实验表明,贝叶普洛斯在F1分数中优于8.4%的最先进的算法,而我们的在线自适应方法可以在现代异构可穿戴平台上达到高达38.7%的节能。
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
Springs are efficient in storing and returning elastic potential energy but are unable to hold the energy they store in the absence of an external load. Lockable springs use clutches to hold elastic potential energy in the absence of an external load but have not yet been widely adopted in applications, partly because clutches introduce design complexity, reduce energy efficiency, and typically do not afford high-fidelity control over the energy stored by the spring. Here, we present the design of a novel lockable compression spring that uses a small capstan clutch to passively lock a mechanical spring. The capstan clutch can lock up to 1000 N force at any arbitrary deflection, unlock the spring in less than 10 ms with a control force less than 1 % of the maximal spring force, and provide an 80 % energy storage and return efficiency (comparable to a highly efficient electric motor operated at constant nominal speed). By retaining the form factor of a regular spring while providing high-fidelity locking capability even under large spring forces, the proposed design could facilitate the development of energy-efficient spring-based actuators and robots.
translated by 谷歌翻译